Pushing the limits of cardiac CT

Steven Dymarkowski
Radiology / Medical Imaging Research Centre
Introduction

- Rapid technological advances and new clinical applications in cardiovascular imaging technology, coupled with increasing therapeutic options for cardiovascular disease, have led to explosive growth in cardiovascular imaging.

- Armamentarium of non-invasive diagnostic tools has expanded:
 - (3D) echocardiography;
 - CT for coronary angiography, cardiac structure and morphology, and calcium scoring;
 - CMR for myocardial structure, function, and viability;
 - molecular radionuclide imaging.

- New opportunities for physicians to utilize non-invasive techniques to gain important information about the condition of their patients.
1998 : 4slice MDCT
Non-Calcified Plaque in LAD
4-Slice MDCT

AO
RVOT

LA
LV
Dual source flash mode (Siemens)

2 X-ray tubes in 90° (SOMATOM Definition Flash 2 x 128)
high pitch (3 - 3.2) spiral mode, interleaving spiral

table feed 43 cm/sec, scan length ≈ 15 cm: very short exposure-time (≈ 0.3 sec)
→ single beat prospective acquisition of entire heart in diastolic phase
→ low radiation dose

HR < 65 bpm & regular, non-obese
acquisition between ± 55-85% of RR
Tailoring the acquisition

Siemens SOMATOM Definition Flash (UZ Leuven)

< 65 bpm, not obese → flash

> 65 bpm, < 80 bpm → step-and-shoot

< 65 bpm & obese

> 80 bpm → spiral

any heartrate & very obese
CT: Radiation dose issues

= mainly based on reduction of exposure time

• Scan mode
F 75y
spiral
140 kV - 233 mAs
DLP 1404 mGy.cm
ED 24 mSv

M 52y
step-and-shoot
100 kV - 241 mAs
DLP 257 mGy.cm
ED 4.5 mSv

F 32y
flash
100 kV - 260 mAs
DLP 52 mGy.cm
ED 0.9 mSv
Radiation dose optimisation

Patient characteristics…
50% moderate
Image analysis - stenosis

Table 2 Diagnostic performance and predictive value of 64-slice CTCA for the detection of \(\geq 50\% \) stenosis on quantitative coronary angiography

<table>
<thead>
<tr>
<th></th>
<th>Prevalence of disease, %</th>
<th>n</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
<th>k</th>
<th>Sensitivity, % (95% CI)</th>
<th>Specificity, % (95% CI)</th>
<th>PPV, % (95% CI)</th>
<th>NPV, % (95% CI)</th>
<th>+LR</th>
<th>-LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>86</td>
<td>104</td>
<td>88</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0.84</td>
<td>100 (86 to 100)</td>
<td>75 (47 to 92)</td>
<td>86 (89 to 99)</td>
<td>100 (70 to 100)</td>
<td>4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>High risk</td>
<td>86</td>
<td>71</td>
<td>60</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0.82</td>
<td>100 (93 to 100)</td>
<td>73 (39 to 93)</td>
<td>95 (95 to 99)</td>
<td>100 (60 to 100)</td>
<td>3.67</td>
<td>0.00</td>
</tr>
<tr>
<td>Low risk</td>
<td>86</td>
<td>33</td>
<td>28</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0.87</td>
<td>100 (85 to 100)</td>
<td>80 (30 to 90)</td>
<td>93 (80 to 99)</td>
<td>100 (40 to 100)</td>
<td>5.60</td>
<td>0.00</td>
</tr>
<tr>
<td>Vessel-based analysis</td>
<td></td>
</tr>
<tr>
<td>All vessels</td>
<td>36</td>
<td>416</td>
<td>141</td>
<td>214</td>
<td>68</td>
<td>3</td>
<td>0.70</td>
<td>96 (94 to 98)</td>
<td>78 (73 to 83)</td>
<td>71 (64 to 77)</td>
<td>99 (86 to 100)</td>
<td>4.59</td>
<td>0.03</td>
</tr>
<tr>
<td>RCA</td>
<td>48</td>
<td>104</td>
<td>48</td>
<td>39</td>
<td>15</td>
<td>2</td>
<td>0.60</td>
<td>96 (85 to 99)</td>
<td>72 (50 to 83)</td>
<td>78 (64 to 98)</td>
<td>95 (82 to 99)</td>
<td>3.45</td>
<td>0.06</td>
</tr>
<tr>
<td>LM</td>
<td>3</td>
<td>104</td>
<td>3</td>
<td>98</td>
<td>3</td>
<td>0</td>
<td>0.65</td>
<td>100 (91 to 100)</td>
<td>97 (91 to 99)</td>
<td>50 (44 to 99)</td>
<td>100 (85 to 100)</td>
<td>33.07</td>
<td>0.00</td>
</tr>
<tr>
<td>LAD</td>
<td>47</td>
<td>104</td>
<td>49</td>
<td>32</td>
<td>23</td>
<td>0</td>
<td>0.57</td>
<td>100 (91 to 100)</td>
<td>59 (44 to 71)</td>
<td>69 (56 to 78)</td>
<td>100 (67 to 100)</td>
<td>2.39</td>
<td>0.00</td>
</tr>
<tr>
<td>CX</td>
<td>38</td>
<td>104</td>
<td>40</td>
<td>48</td>
<td>17</td>
<td>1</td>
<td>0.66</td>
<td>98 (86 to 100)</td>
<td>73 (60 to 83)</td>
<td>70 (58 to 81)</td>
<td>98 (67 to 100)</td>
<td>3.62</td>
<td>0.03</td>
</tr>
<tr>
<td>Segment-based analysis</td>
<td></td>
</tr>
<tr>
<td>All segments</td>
<td>13</td>
<td>1525</td>
<td>103</td>
<td>1265</td>
<td>122</td>
<td>15</td>
<td>0.60</td>
<td>92 (89 to 96)</td>
<td>91 (89 to 92)</td>
<td>60 (54 to 95)</td>
<td>99 (96 to 99)</td>
<td>10.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Proximal</td>
<td>14</td>
<td>416</td>
<td>58</td>
<td>312</td>
<td>44</td>
<td>2</td>
<td>0.65</td>
<td>97 (97 to 98)</td>
<td>88 (84 to 91)</td>
<td>57 (47 to 87)</td>
<td>98 (97 to 100)</td>
<td>7.82</td>
<td>0.04</td>
</tr>
<tr>
<td>Mid</td>
<td>23</td>
<td>302</td>
<td>67</td>
<td>188</td>
<td>34</td>
<td>2</td>
<td>0.71</td>
<td>97 (98 to 98)</td>
<td>86 (80 to 99)</td>
<td>68 (58 to 75)</td>
<td>98 (96 to 100)</td>
<td>6.65</td>
<td>0.03</td>
</tr>
<tr>
<td>Distal</td>
<td>9</td>
<td>327</td>
<td>24</td>
<td>286</td>
<td>11</td>
<td>6</td>
<td>0.71</td>
<td>80 (61 to 92)</td>
<td>96 (93 to 98)</td>
<td>69 (51 to 93)</td>
<td>98 (95 to 99)</td>
<td>21.60</td>
<td>0.21</td>
</tr>
<tr>
<td>Side branch</td>
<td>8</td>
<td>450</td>
<td>34</td>
<td>408</td>
<td>33</td>
<td>5</td>
<td>0.60</td>
<td>87 (72 to 92)</td>
<td>92 (90 to 95)</td>
<td>51 (38 to 83)</td>
<td>99 (97 to 100)</td>
<td>11.85</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Meijboom et al. Heart 2007
Patient 3 y

FLASH Cardio

80 kV (2x)
22 mAs/rotation

CTDIvol 0.19 mGy
DLP 0.7 mGy cm
Effective dose 0.05 mSv
What does CT offer?

• Morphology: high spatial resolution
• Tissue characterization
 – Calcium scoring
 – Density analysis
• Cardiac function:
 – Systolic function
• Myocardial perfusion imaging (CTP)
• Valvular assessment
 • Artificial valves
 • TAVR
 • Assist devices
• Coronary artery imaging
• Great vessels
Cardiac function - CT

- Used to be only feasible with spiral acquisition (radiation dose!)
- Any cardiac phase is contained in an ECG-gated helical MDCT dataset: images from different phases can be produced retrospectively
- Functional analysis not possible with single heart beat mode

N = 181, Cardiac Function; CT vd MR

EF : 53±14% for MRI vs. 53%±15% for CT.
EDV : 74±23 ml at MRI vs. 71±19 ml at CT
MM : 63±20 g at MRI and 56±18 g at CT
Cardiac function

Global function

Regional function
Valvular Assessment CT

- No means of quantifying valvular regurgitations
- Can be considered in selected clinical scenarios
 - TAVR – aortic Valve replacement
 - Mechanical valve dysfunction
 - Assessment of external devices
TAVI

• Prior to valve repair

 o anatomy LVOT & aortic root
 o plaque burden
 o distance aortic annulus - coronary ostia
 o diameter aortic annulus
 o predicting optimal angiographic projection for deployment
• Prosthetic valves
Cardiac anatomy

- Coronary venous anatomy for CRT: left ventricular pacing lead implantation in coronary sinus

Assist device

- HeartMate II (Thoratec) LVAD (up to 10l/min)
Assist device

- Synergy (CircuLite) LVAD (partial support - 3l/min)

4D FLASH acquisition: 10 frames
Coronaries vs Perfusion

CT

Adenosine stress MRI
Myocardial Infarction

CT

MRI

Edema

Perfusion

Microvascular Status

Dual Energy CT at rest

Vliegenthart AJR 2012; 199:S54–S63
Conclusion

- CT has matured into clinically important non-invasive imaging techniques
- More advantages than shortcomings if compared to recent past.
- Following appropriateness criteria, the best choice of protocol can be made
- Use of Siemens Dual Source CT has expanded both in applications and patient selection
Acknowledgements

• J. Bogaert
• K. Byloos
• W. Coudyzer
• K. Doulaptsis
• S. Ghysels
• K. Goetschalckx
• H. Hermans
• G. Putzeys
• M. Koolen (AZ Diest)