We power the world with innovative gas turbines
Gas turbines from 4 to 400 MW

The Siemens gas turbine range has been designed and tailored to help meet our customers’ challenges in a dynamic market environment.

Our models range from 4 to 400 MW, fulfilling the requirements of a wide spectrum of applications in terms of efficiency, reliability, flexibility, and environmental compatibility.

The products offer low lifecycle costs and an excellent return on investment.
Siemens gas turbines overview

For more information, please click on a product name

[Power generation in MW(e) / mechanical drive in MW]

Industrial gas turbines

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGT-500</td>
<td>19/19 MW</td>
</tr>
<tr>
<td>SGT-600</td>
<td>24/25 MW</td>
</tr>
<tr>
<td>Industrial RB211</td>
<td>27 to 32/28 to 34 MW</td>
</tr>
</tbody>
</table>

Heavy-duty gas turbines

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGT6-2000E</td>
<td>116 MW</td>
</tr>
<tr>
<td>SGT6-5000F</td>
<td>242 MW</td>
</tr>
<tr>
<td>SGT6-8000H</td>
<td>296 MW</td>
</tr>
</tbody>
</table>

Aeroderivative gas turbines

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGT5-2000E</td>
<td>187 MW</td>
</tr>
<tr>
<td>SGT5-4000F</td>
<td>307 MW</td>
</tr>
<tr>
<td>SGT5-8000H</td>
<td>400 MW</td>
</tr>
</tbody>
</table>

General note:

All simple cycle and mechanical drive performance data in this document are gross values at ISO ambient conditions.

All combined cycle performance data in this document are net values at ISO ambient conditions, assuming 50 mbar condenser pressure.
The SGT5-8000H offers outstanding performance and high flexibility. With a gross power output of 400 MW, it is the world’s most powerful gas turbine in commercial operation today.

The turbine is the core component of highly efficient gas-fired power plants, designed for 600 MW in combined cycle operation, and combined cycle efficiencies of more than 60%.

With more than 180,000 fired hours, the SGT-8000H series provides mature technology with verified reliability and availability.

- Outstanding performance
- High flexibility, short start-up times
- Proven in commercial operations

The SGT5-8000H achieves a world-class efficiency of more than 60% in combined cycle operations.

SGT5-8000H
Heavy-duty gas turbine

Power generation

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross efficiency</td>
<td>40.0%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>627 °C (1,161 °F)</td>
</tr>
</tbody>
</table>

Düsseldorf Lausward, Germany

Power output: 400 MW
The SGT6-8000H offers outstanding performance and high flexibility. The air-cooled turbine with a gross power output of **296 MW** is designed for simple combined cycle integration and short start-up times.

The turbine is the core component of highly efficient gas-fired power plants, designed for 440 MW in combined cycle operation, and combined cycle efficiencies of more than 60%.

With more than **180,000 fired hours**, the SGT-8000H series provides mature technology with verified reliability and availability.

- Outstanding performance
- High flexibility, short start-up times
- Proven in commercial operations

Technical data sheet
Key features

SGT6-8000H
Heavy-duty gas turbine

Power generation

- **Frequency**: 60 Hz
- **Gross efficiency**: 40.0%
- **Exhaust temperature**: 630 °C (1,166 °F)

Introducion
Gas turbine overview
References
The proven SGT5-4000F gas turbine has a robust design with internal cooling air passages for trusted long-term operation and fast start-up capability. The advanced annular combustion chamber with individually replaceable heat shields allows for easy and fast walk-in maintenance. Hydraulic Clearance Optimization (HCO) reduces clearance losses to increase the gas turbine efficiency and minimize degradation at start-up and shut down.

Today, around 340 turbines have been sold. The installed fleet has accumulated an impressive fleet experience of 12.5 million equivalent operating hours, and a fleet reliability of 99.2%.

- Proven design, large fleet experience
- Easy maintenance, high availability
- High operational flexibility

The SGT5-4000F is a well-proven 50 Hz gas turbine with an outstanding reliability and availability.
The SGT6-5000F gas turbine offers economical power generation with fast start-up for peak, intermediate, or base load duty. It achieves peak values for reliability and continuous operation with highest performance values in its class.

Today, around 370 turbines have been sold. The installed fleet has accumulated more than 11 million operating hours, with a fleet reliability of 99.2%.

- Highest power output for 60 Hz F-class
- Fast start-up and load changing capabilities
- Low emissions with an NOₓ emission of <9 ppmvd on gas and <25 ppmvd on oil

The SGT6-5000F offers world class reliability and best in class emission values.

SGT6-5000F
Heavy-duty gas turbine

Power generation
- Frequency: 60 Hz
- Gross efficiency: 39.0%
- Exhaust temperature: 600 °C (1,113 °F)

La Caridad, Sonora, Mexico

Power output: 242 MW
The **SGT5-2000E** gas turbine is a proven, robust engine for the 50 Hz market which is used in simple cycle or combined cycle processes with or without combined heat and power. It is suitable for all load ranges, including peak load.

The SGT5-2000E offers outstanding fuel flexibility. It can be fired with low calorific gases or gases containing CO₂, H₂S and N₂, as well as with crude oil and other liquid fuels with high viscosity. It provides low NOx emissions, even in the part-load range.

Today, around 480 turbines have been sold (approx. 220 under license). Our installed fleet has accumulated more than 17 million equivalent operating hours. The SGT-2000E series fleet’s overall best-in-class reliability exceeds 99%.

- Best-in-class reliability
- High operational and fuel flexibility
- Easy maintenance

SGT5-2000E

Heavy-duty gas turbine

Power output: 187 MW

Power generation

- Frequency: 50 Hz
- Gross efficiency: 36.2%
- Exhaust temperature: 536 °C (997 °F)

Technical data sheet
Key features

Az-Zour, Kuwait

Introduction
Gas turbine overview

The SGT6-2000E gas turbine is a proven, robust engine for the 60 Hz market which is used in simple cycle or combined cycle processes with or without combined heat and power supply. It is suitable for all load ranges, including peak load.

The SGT6-2000E offers outstanding fuel flexibility. It can be fired with low calorific gases or gases containing CO₂, H₂S and N₂, as well as with crude oil and other liquid fuels with high viscosity. It provides low NOx emissions, even in the part-load range.

Today, around 110 turbines have been sold, resulting in a fleet experience of nearly 7 million equivalent operating hours. The SGT-2000E series fleet’s overall best-in-class reliability constantly exceeds 99%.

- Best-in-class reliability
- High operational and fuel flexibility
- Easy maintenance

SGT6-2000E
Heavy-duty gas turbine

Power output: 116 MW

Power generation
- Frequency: 60 Hz
- Gross efficiency: 34.3%
- Exhaust temperature: 537 °C (999 °F)
The SGT-800 industrial gas turbine offers broad flexibility in fuels, operating conditions, maintenance concepts, package solutions, and ratings.

The excellent efficiency and steam-raising capability make it outstanding in cogeneration and combined cycle installations. The SGT-800-based power plant, designed for flexible operation, is perfectly suited as grid support.

The SGT-800 combines a simple, robust design, for high reliability and easy maintenance, with high efficiency and low emissions. With a proven, long-term record of successful installations around the world, the SGT-800 is an excellent choice for power generation for industrial and oil and gas applications.

- Proven reliability
- Flexible solution
- Excellent performance

SGT-800 core engine is available in three ratings with standard options for hot and cold climates

SGT-800

Industrial gas turbine

Power generation

- Frequency: 50/60 Hz
- Gross efficiency: 37.7/38.3/39.0%
- Exhaust temperature: 541 – 553 °C (1,007 – 1,027 °F)
- Exhaust gas flow: 132.8 – 137.2 kg/s

SCC-800 2x1 combined cycle power plant

- Net plant output: 135.4/143.6/150.0 MW(e)
- Net plant efficiency: 54.7/55.4/56.2%
With maximized uptime, top-class performance, and a low environmental footprint offering the customer high lifetime profitability, the SGT-750 industrial gas turbine is a perfect choice for the oil and gas industry as well as industrial power generation.

The modular and flexible engine enables onshore or offshore applications, mechanical drive or heat and power. It combines a robust, reliable design with high efficiency and low emissions.

The SGT-750 has a track record of proven and verified results after years in operation and several references in both power generation and mechanical drive applications such as pipeline and liquefied natural gas (LNG).

- Maximized uptime
- High efficiency
- Low emissions

SGT-750 combined heat and power plant in Altamira, Mexico

SGT-750

Industrial gas turbine

Power generation
- Frequency: 50/60 Hz
- Gross efficiency: 40.2%
- Exhaust temperature: 458.1 °C (856.5 °F)
- Exhaust gas flow: 113.8 kg/s

Mechanical drive applications
- Efficiency: 41.45%
- Exhaust temperature: 458.1 °C (856.5 °F)
- Exhaust gas flow: 113.8 kg/s
Thanks to its wide fuel range capability and design features, the SGT-700 is a perfect choice for several onshore applications: Industrial power generation, oil and gas power generation, and mechanical drive applications.

It performs well in combined cycle plants, and combined heat and power plants.

The SGT-700 gas turbine is an evolution of the proven SGT-600 and is specifically designed for higher power output. It offers easy on-site or off-site maintenance, and operates with a wide range of gaseous and liquid fuels on Dry Low Emission (DLE).

More than 70 units have been sold with 1.2 million equivalent operating hours, and 78,000 equivalent operating hours for the fleet-leading gas turbine.

- Robust, reliable design
- High fuel flexibility
- Low emissions

Power generation

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50/60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross efficiency</td>
<td>37.2%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>533 °C (991 °F)</td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>95 kg/s</td>
</tr>
</tbody>
</table>

Mechanical drive applications

Efficiency	38.2%
Exhaust temperature	533 °C (991 °F)
Exhaust gas flow	95 kg/s
High reliability and availability in combination with good fuel flexibility and third-generation DLE makes the SGT-600 a perfect choice for several onshore applications: Industrial power generation, oil and gas power generation, and mechanical drive applications. Within the IPG applications, the turbine performs well in combined heat and power plants, and combined cycle plants.

The industrial gas turbine combines a robust, reliable design with high fuel flexibility, and low emissions.

More than 330 units have been sold with over 9 million equivalent operating hours, and 185,000 equivalent operating hours for the fleet-leading gas turbine.

- Robust, reliable design
- High fuel flexibility
- Low emissions

Maintainable, reliable, and robust twin-shaft design for mechanical drive and power generation

SGT-600

Industrial gas turbine

Power generation

- Frequency: 50/60 Hz
- Gross efficiency: 33.6%
- Exhaust temperature: 543 °C (1,009 °F)
- Exhaust gas flow: 81.3 kg/s

Mechanical drive applications

- Efficiency: 34.6%
- Exhaust temperature: 543 °C (1,009 °F)
- Exhaust gas flow: 81.3 kg/s

Power generation: 24.5 MW(e)

Mechanical drive: 25.3 MW
Combining high overall efficiency and low maintenance costs with long intervals between overhauls, the SGT-500 is positioned well for oil and gas power generation and mechanical drive applications both onshore and offshore.

In addition to its proven, robust, and reliable design, the SGT-500 has excellent fuel flexibility with the capability of burning heavy fuel oils (HFO), naphtha, and hydrogen gases.

More than 175 units have been sold with over 9 million equivalent operating hours.

- Fuel flexibility
- Proven design
- Easily maintained
The **SGT-400** is a twin-shaft gas turbine available in two different power ratings for both power generation and mechanical drive applications.

The twin-shaft arrangement allows for commonality of parts in mixed-duty installations.

The gas turbine offers the highest efficiency in its power class, incorporating the latest aerodynamic and combustion technologies.

With over 25 years of operating experience, the SGT-400 is proven in both offshore and onshore applications. Over 300 units have been sold with approximately 3 million hours operating experience.

- Latest aerodynamic and combustion technology
- Suitable for all climates, onshore and offshore
- High power-to-weight ratio

SGT-400

Industrial gas turbine

Power generation

- **Power generation:** 12.9/14.3 MW(e)
- **Mechanical drive:** 13.4/14.9 MW

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Gross efficiency</td>
<td>34.8 – 35.4%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>540 – 555 °C (1,004 – 1,031 °F)</td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>39.4 – 44.3 kg/s</td>
</tr>
</tbody>
</table>

Mechanical drive applications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>36.2 – 36.8%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>540 – 555 °C (1,004 – 1,031 °F)</td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>39.4 kg/s – 44.0 kg/s</td>
</tr>
</tbody>
</table>
The SGT-300 industrial gas turbine has a rugged industrial design that enables **high efficiency**, **reliability**, and **excellent emissions performance** in a broad spectrum of applications for both power generation and mechanical drive.

The gas turbine is a **proven** unit for all electrical power generation and cogeneration applications. It operates on a wide range of gaseous and liquid fuels. The compact arrangement, on-site or offsite maintainability, and inherent reliability of the SGT-300 make it an ideal gas turbine for the demanding oil and gas industry.

Over **140 units** have been sold, with more than **4.5 million equivalent operating hours**.

- Low maintenance requirements
- Low emissions
- Single-shaft version for power generation, twin-shaft version for mechanical drive applications

SGT-300

Industrial gas turbine

Power generation

- **Frequency**: 50/60 Hz
- **Gross efficiency**: 30.6%
- **Exhaust temperature**: 542 °C (1,008 °F)
- **Exhaust gas flow**: 30.2 kg/s

Mechanical drive applications

- **Efficiency**: 34.6%
- **Exhaust temperature**: 498 °C (924 °F)
- **Exhaust gas flow**: 29.0 kg/s

Robust, reliable, maintainable single-shaft version for power generation applications
The rugged and compact SGT-200 gas turbine is available as a single-shaft version for power generation, and as a twin-shaft turbine for mechanical drive.

The gas turbine operates with various gaseous and liquid fuels. It provides high efficiency and an excellent power-to-weight ratio and is available as a factory-assembled package.

The SGT-200 gas turbine combines simple design with state-of-the-art technology and is ideally suited for use, for example, as a compressor drive.

More than 430 units have been sold with more than 30 million equivalent operating hours.

- Robust, reliable design
- Flexible fuel capability
- Single-shaft and twin-shaft options available

SGT-200

Industrial gas turbine

Power generation

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50 Hz/60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross efficiency</td>
<td>31.5%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>466 °C (871 °F)</td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>29.3 kg/s</td>
</tr>
</tbody>
</table>

Mechanical drive applications

Efficiency	33%
Exhaust temperature	493 °C (919 °F)
Exhaust gas flow	29.5 kg/s
The SGT-100 industrial gas turbine is a proven unit for all electrical power generation and mechanical drive applications. The compact arrangement, on-site or off-site maintainability, and inherent reliability makes it an ideal gas turbine for the demanding oil and gas industry.

The gas turbine has a rugged industrial design that enables high efficiency and excellent emissions performance on a wide range of gaseous and liquid fuels.

More than 410 units have been sold with more than 24 million operating hours. The lead package has over 120,000 equivalent hours of operation.

- Robust and reliable product
- Wide range of gaseous and liquid fuels
- Single-shaft version for power generation or twin-shaft version for mechanical drive applications

SGT-100

Industrial gas turbine

Power generation: 5.1/5.4 MW(e)

Mechanical drive: 5.7 MW

Power generation

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50/60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross efficiency</td>
<td>30.2 – 31.0%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>531 – 545 °C (988 – 1,013 °F)</td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>19.5 – 20.6 kg/s</td>
</tr>
</tbody>
</table>

Mechanical drive applications

Efficiency	32.9%
Exhaust temperature	543 °C (1,009 °F)
Exhaust gas flow	19.7 kg/s
Designed for industrial use in power generation and mechanical drive applications, the Industrial Trent 60 has established a new benchmark for power output, fuel economy, and cost savings.

The gas turbine is highly flexible, offering high power and efficiency with minimal drop-off at part-load and reduced speed conditions. It is available with Wet Low Emission (WLE) and DLE combustion systems.

The Industrial Trent 60 is proven in many different environments including arctic, desert, tropical, and coastal in different applications ranging from peaking to base load, simple cycle, combined cycle, and mechanical drive.

- Most powerful, pure aeroderivative gas turbine in its class
- Flexible with high cyclic life and fast starts
- Modular package design to allow for quick installation and maintenance in the field

The Industrial Trent 60 can cold-start to full power in under 10 minutes and also has high cyclic life.

Industrial Trent 60
Aeroderivative gas turbine

<table>
<thead>
<tr>
<th>Power generation</th>
<th>Mechanical drive applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Efficiency</td>
</tr>
<tr>
<td>50/60 Hz</td>
<td>41.9 – 43.6%</td>
</tr>
<tr>
<td>Gross efficiency</td>
<td>Exhaust temperature</td>
</tr>
<tr>
<td>41.1 – 43.4%</td>
<td>422 – 440 °C (792 – 824 °F)</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>Exhaust gas flow</td>
</tr>
<tr>
<td>416 – 433 °C (781 – 811 °F)</td>
<td>154.4 – 164.2 kg/s</td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td></td>
</tr>
<tr>
<td>155 – 180 kg/s</td>
<td></td>
</tr>
</tbody>
</table>
With class-leading reliability and availability, the **Industrial RB211** is a proven, dependable choice in power generation and mechanical drive applications. It is qualified to meet the stringent standards of the oil and gas industry in both onshore and offshore service.

The aeroderivative gas generator is highly tolerant of transient excursions and challenging mission cycles, and can be easily exchanged at site, reducing maintenance downtime and cost. Both conventional and DLE combustion systems are available, including dual fuel capability.

In its **40-year evolution**, the Industrial RB211 has accumulated over 36 million equivalent operating hours, with over 750 units sold.

- Proven track record in the oil and gas industry
- Several variants to meet different power needs
- Lightweight, compact, modular package design to maximize power density

Industrial RB211

Aeroderivative gas turbine

Power generation

<table>
<thead>
<tr>
<th>Frequency</th>
<th>50/60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross efficiency</td>
<td>36.4 – 39.3%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>501 – 512 °C (934 – 953 °F)</td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>91.0 – 99.8 kg/s</td>
</tr>
</tbody>
</table>

Mechanical drive applications

Efficiency	37.3 – 40.4%
Exhaust temperature	500 – 510 °C (932 – 950 °F)
Exhaust gas flow	91.3 – 96.1 kg/s

Two Industrial RB211-GT30 packages on an FPSO vessel

The Industrial RB211 is a two-spool gas generator aerodynamically coupled to a free power turbine

Introduction
Gas turbine overview
Technical data sheet
References
Based on proven aeroderivative design, the Industrial 501 delivers high efficiency and outstanding reliability for power generation applications like cogeneration, offshore platforms, and emergency power. The gas turbine offers rugged, easy-to-maintain performance due to features such as auxiliary equipment.

The gas turbine engine is designed to operate on a wide variety of fuels. The fuel system operations include dual fuel, steam, and water injection. DLE technology is also available.

The Industrial 501 has accumulated over 110 million hours of operation with more than 500 customers in 53 countries.

- More than 1,600 gas turbines supplied
- Full power available within 60 seconds
- High electrical and cycle efficiency

Technical data sheet

Power station at Mitchelstown, Ireland

Industrial 501
Aeroderivative gas turbine

Power generation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Gross efficiency</td>
<td>29.0 – 40.1%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>498 – 560 °C (986 – 1,040 °F)</td>
</tr>
<tr>
<td>Exhaust gas flow</td>
<td>15.4 – 21.1 kg/s</td>
</tr>
</tbody>
</table>

Power generation: 3.9 – 6.4 MW(e)
Siemens gas turbines are operating in more than 60 countries. We provide proven technology with over 6,750 installed heavy-duty, industrial and aeroderivative gas turbines.
Performance data overview: Power generation

<table>
<thead>
<tr>
<th></th>
<th>Power generation (metric units)</th>
<th>Power generation (imperial units)</th>
<th>Mechanical drive (metric units)</th>
<th>Mechanical drive (imperial units)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power output</td>
<td>Frequency</td>
<td>Gross efficiency</td>
<td>Heat rate</td>
</tr>
<tr>
<td>SGT5-8000H</td>
<td>400 MW</td>
<td>50 Hz</td>
<td>40.0%</td>
<td>8,999 kJ/kWh</td>
</tr>
<tr>
<td>SGT6-8000H</td>
<td>296 MW</td>
<td>60 Hz</td>
<td>40.0%</td>
<td>8,999 kJ/kWh</td>
</tr>
<tr>
<td>SGT5-4000F</td>
<td>307 MW</td>
<td>50 Hz</td>
<td>40.0%</td>
<td>9,001 kJ/kWh</td>
</tr>
<tr>
<td>SGT6-5000F</td>
<td>242 MW</td>
<td>60 Hz</td>
<td>39.0%</td>
<td>9,230 kJ/kWh</td>
</tr>
<tr>
<td>SGT5-2000E</td>
<td>187 MW</td>
<td>50 Hz</td>
<td>36.2%</td>
<td>9,945 kJ/kWh</td>
</tr>
<tr>
<td>SGT6-2000E</td>
<td>116 MW</td>
<td>60 Hz</td>
<td>34.3%</td>
<td>10,496 kJ/kWh</td>
</tr>
<tr>
<td>SGT-800 (53.0 MW)</td>
<td>53.0 MW(e)</td>
<td>50/60 Hz</td>
<td>39.0%</td>
<td>9,231 kJ/kWh</td>
</tr>
<tr>
<td>SGT-800 (50.5 MW)</td>
<td>50.5 MW(e)</td>
<td>50/60 Hz</td>
<td>38.3%</td>
<td>9,389 kJ/kWh</td>
</tr>
<tr>
<td>SGT-800 (47.5 MW)</td>
<td>47.5 MW(e)</td>
<td>50/60 Hz</td>
<td>37.7%</td>
<td>9,547 kJ/kWh</td>
</tr>
<tr>
<td>SGT-750</td>
<td>38.1 MW(e)</td>
<td>50/60 Hz</td>
<td>40.2%</td>
<td>8,953 kJ/kWh</td>
</tr>
<tr>
<td>SGT-700</td>
<td>32.8 MW(e)</td>
<td>50/60 Hz</td>
<td>37.2%</td>
<td>9,675 kJ/kWh</td>
</tr>
<tr>
<td>SGT-600</td>
<td>24.5 MW(e)</td>
<td>50/60 Hz</td>
<td>33.6%</td>
<td>10,720 kJ/kWh</td>
</tr>
<tr>
<td>SGT-500</td>
<td>19.1 MW(e)</td>
<td>50/60 Hz</td>
<td>33.8%</td>
<td>10,690 kJ/kWh</td>
</tr>
<tr>
<td>SGT-400 (15 MW)</td>
<td>14.3 MW(e)</td>
<td>50/60 Hz</td>
<td>35.4%</td>
<td>10,178 kJ/kWh</td>
</tr>
<tr>
<td>SGT-400 (13 MW)</td>
<td>12.9 MW(e)</td>
<td>50/60 Hz</td>
<td>34.8%</td>
<td>10,355 kJ/kWh</td>
</tr>
<tr>
<td>SGT-300</td>
<td>7.9 MW(e)</td>
<td>50/60 Hz</td>
<td>30.6%</td>
<td>11,773 kJ/kWh</td>
</tr>
<tr>
<td>SGT-200</td>
<td>6.8 MW(e)</td>
<td>50/60 Hz</td>
<td>31.5%</td>
<td>11,418 kJ/kWh</td>
</tr>
<tr>
<td>SGT-100 (5.4 MW)</td>
<td>5.4 MW(e)</td>
<td>50/60 Hz</td>
<td>31.0%</td>
<td>11,613 kJ/kWh</td>
</tr>
<tr>
<td>SGT-100 (5.1 MW)</td>
<td>5.1 MW(e)</td>
<td>50/60 Hz</td>
<td>30.2%</td>
<td>11,914 kJ/kWh</td>
</tr>
<tr>
<td>Industrial Trent 60 DLE</td>
<td>53.1 MW(e)</td>
<td>50 Hz</td>
<td>42.4%</td>
<td>8,488 kJ/kWh</td>
</tr>
<tr>
<td>Industrial Trent 60 DLE with ISI</td>
<td>63.5 MW(e)</td>
<td>50 Hz</td>
<td>43.2%</td>
<td>8,322 kJ/kWh</td>
</tr>
<tr>
<td>Industrial Trent 60 DLE</td>
<td>54.0 MW(e)</td>
<td>60 Hz</td>
<td>42.5%</td>
<td>8,465 kJ/kWh</td>
</tr>
<tr>
<td>Industrial Trent 60 DLE with ISI</td>
<td>61.8 MW(e)</td>
<td>60 Hz</td>
<td>43.4%</td>
<td>8,300 kJ/kWh</td>
</tr>
<tr>
<td>Industrial Trent 60 WLE with ISI</td>
<td>66.0 MW(e)</td>
<td>60 Hz</td>
<td>41.5%</td>
<td>8,669 kJ/kWh</td>
</tr>
<tr>
<td>Industrial Trent 60 WLE with ISI</td>
<td>65.7 MW(e)</td>
<td>60 Hz</td>
<td>41.1%</td>
<td>8,760 kJ/kWh</td>
</tr>
<tr>
<td>Industrial RB211 G62 DLE</td>
<td>27.2 MW(e)</td>
<td>50/60 Hz</td>
<td>36.4%</td>
<td>9,904 kJ/kWh</td>
</tr>
<tr>
<td>Industrial RB211 GT62 DLE</td>
<td>29.8 MW(e)</td>
<td>50/60 Hz</td>
<td>37.5%</td>
<td>9,589 kJ/kWh</td>
</tr>
<tr>
<td>Industrial RB211 GT61 DLE</td>
<td>32.1 MW(e)</td>
<td>50/60 Hz</td>
<td>39.3%</td>
<td>9,159 kJ/kWh</td>
</tr>
<tr>
<td>Industrial RB211 GT30 50 Hz</td>
<td>32.5 MW(e)</td>
<td>50 Hz</td>
<td>37.7%</td>
<td>9,549 kJ/kWh</td>
</tr>
<tr>
<td>Industrial RB211 GT30 60 Hz</td>
<td>31.5 MW(e)</td>
<td>60 Hz</td>
<td>36.4%</td>
<td>9,901 kJ/kWh</td>
</tr>
<tr>
<td>Industrial 501 (6.4 MW)</td>
<td>6.4 MW(e)</td>
<td>50/60 Hz</td>
<td>40.1%</td>
<td>8,971 kJ/kWh</td>
</tr>
<tr>
<td>Industrial 501 (5.2 MW)</td>
<td>5.2 MW(e)</td>
<td>50/60 Hz</td>
<td>31.5%</td>
<td>11,445 kJ/kWh</td>
</tr>
<tr>
<td>Industrial 501 (3.9 MW)</td>
<td>3.9 MW(e)</td>
<td>50/60 Hz</td>
<td>29.0%</td>
<td>12,393 kJ/kWh</td>
</tr>
</tbody>
</table>
Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.